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Abstract. Various algorithmic differentiation tools have been developed
and applied to large-scale simulation software for physical phenomena.
Until now, two strictly disconnected approaches have been used to im-
plement algorithmic differentiation (AD), namely, source transformation
and operator overloading. This separation was motivated by different fea-
tures of the programming languages such as Fortran and C++. In this
work we have for the first time combined the two approaches to imple-
ment AD for C++ codes. Source transformation is used for core routines
that are repetitive where the transformed source can be optimized much
better by modern compilers, and operator overloading is used to inter-
connect at the upper level, where source transformation is not possible
because of complex language constructs of C++. We have also devised
a method to apply the mixed approach in the same application semi-
automatically. We demonstrate the benefit of using this approach using
some real world applications.
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1 Introduction

Solution techniques for optimal control and optimal design problems rely on
the correct and efficient computation of the adjoint state. Various analytical and
numerical techniques have been devised to compute these derivatives in the past.
One of the emerging techniques for the computation of derivatives on modern
computers is algorithmic differentiation (AD) [6]. Despite differentiation being
a badly conditioned operation in general research has shown [3] that the process
of algorithmic differentiation is well behaved and the derivatives obtained are
accurate to within round-off errors. This situation is in contrast to numerical
derivatives computed by using finite-differencing techniques, where the difference
step size is of critical importance.

Algorithmic differentiation assumes that functions are evaluated by using a
finitely terminating evaluation procedure consisting of simple arithmetic opera-
tions {+,−, /, ∗} and elementary function evaluations {

√
, sin, cos, exp, log, . . .}.

Since the analytical derivatives of such arithmetic operations and elementary
functions are well known, these can be introduced in the evaluation procedure



almost mechanically, and the chain rule of differentiation can be applied to prop-
agate the derivatives from one variable to another in the evaluation. In [6] various
mode of propagation of derivatives as well as methods to implement tools are
discussed in great detail. Here we present two techniques of AD, namely source
transformation and operator overloading.

Source transformation: Source transformation AD tools generate a new source
code that computes the derivatives of an input source code. The output code
must be compiled and executed in order to compute the derivatives. Tools such as
ADIFOR [2], Tapenade [7], and OpenAD [11] can be used to generate derivative
code for functions written in Fortran. Tapenade and ADIC [9] are examples of
source transformation AD tools for C. In this work, we use ADIC to differentiate
input source code portions written in C. In the output code, active variables are
declared as objects of DERIV TYPE, and runtime functions are used to propagate
derivatives between them. When the output code is compiled with an appropri-
ate driver and runtime library provided by ADIC, the Jacobian matrix can be
computed.

Because such tools perform source code analysis, they can identify algorith-
mically active and passive variables and portions of the code. Furthermore, com-
pilers can optimize the output code resulting in high performance. However, no
tool can generate derivative code for complete C++ input. C++ contains fea-
tures such as polymorphism, inheritance, and templates that cannot be resolved
statically, precluding the generation of correct derivative code.

Operator overloading: In an object-oriented language such as C++ the concept
of operator overloading is well known. Several tools have been developed in re-
cent years for AD using C++ operator overloading. ADOL-C [13] is a well-known
open source AD tool with many features and high flexibility and has been suc-
cessfully used to compute derivatives in a large number of simulation codes. The
most important manual change required for using ADOL-C in any simulation is
to convert the datatype of the real values to the special datatype adouble defined
in the ADOL-C library. All operations executed after a call to trace_on() and
before a call to trace_off() are recorded in an internal representation called the
trace. Before the actual computation takes place, the independent variables are
marked by assigning them values using the special <<= operator. Similarly the
final dependent variables are marked by extracting their values using the spe-
cial >>= operator. The trace can then be used in any mode of AD (i.e., forward
or reverse) in order to compute first or higher derivatives. Several easy-to-use
drivers for computing the derivative information from the trace are available.
The most used drivers are gradient(), jacobian(), and hessian(). For further
usage details see [13].

The creation of the trace is the most crucial part of the whole program;
and depending on the complexity of the functions being traced, it can become
large and thus has the most impact on the memory consumption of the program.
Where the trace does not fit into a prescribed amount of memory (RAM) it spills
over automatically to the disk as trace files, thereby reducing the performance of



the implementation severely. Past attempts at reducing the memory requirement
for certain applications include using checkpointing strategies [4, 5]. However, for
a number of problems checkpointing is not applicable.

We propose a mixed approach that uses both operator overloading and source
transformation to differentiate an input code that is largely written in C++ but
whose computationally intensive portions are written in a C-like manner. Our
approach employs operator overloading for most of the application and source
transformation for the C-like portions. Because the computationally intensive
portions contribute most to the trace, using source transformation instead for
these portions, leads to a smaller trace and better performance. We have made
changes to both ADIC and ADOL-C and written a preprocessor that enables
the approach to be semi-automated. The rest of the paper is organized as fol-
lows. Section 2 presents the details of the mixed approach. Section 3 presents
experimental results on two applications and Section 4 concludes the paper.

2 Mixed approach

The process of converting an ADOL-C instrumented application to use ADIC in
certain parts is the following: (a) The user identifies a computationally intensive
and C-like function(s) from the input based on performance analysis or experi-
ence. (b) This function must be treated as an externally differentiated function
(EDF) by ADOL-C. For this, annotations are added to the input to support
extraction of the EDF and its callees for differentiation by ADIC. Additional
annotations are used to generate wrappers functions and files to copy data be-
tween ADOL-C data structures and the EDF. (c) ADIC is used to differentiate
the EDF and provide forward and reverse mode differentiated code for it. (d)
The EDF input, output, wrapper files, and original ADOL-C code are then built
together. The rest of this section elaborates on the concepts of the EDF and the
changes we made to ADOL-C and ADIC to support the mixed approach.

Externally differentiated functions in ADOL-C: The individual arithmetic op-
erations and mathematical function evaluations of an EDF are not recorded
on the ADOL-C trace. Instead the actual implementation of the differentiated
EDF is provided via user defined function pointers that implement a certain
predefined signature. As one can see in Fig. 1 the EDF replaces a large part of
the trace by repeated calls to itself, which reduces the size of the trace. When
ADOL-C processes the trace and arrives at a call to the EDF, ADOL-C calls the
corresponding user-provided forward mode- or reverse mode- derivative code to
obtain the derivatives.

ADOL-C previously maintained the EDF interface using a special structure
struct ext_diff_fct that is registered to the ADOL-C core on a per function
basis. Implementations for the forward and reverse mode first order derivative
computations are set up in this structure as function pointers that have a partic-
ular signature as defined in the header file <adolc/externfcts.h>. The limitation
of this interface is that it expects all inputs as well as all outputs to the EDF to
be passed as two contiguously allocated arrays.



Part A Part B Part C

ADOL-C trace (basic)

Part A

Part B

Part C

ADOL-C trace (with external function)

Fig. 1. ADOL-C trace of a simple and externally differentiated function (left). Re-
peated evaluation of an external function in forward and reverse mode (right)

The design of the adouble type in ADOL-C creates an internal representation
of the executed code on runtime. In order to do so most efficiently, adouble
objects are allocated in a memory pool whereever there is unused space. Unless
the pool is exhausted, new memory is not allocated. This design makes the
allocation of large contiguous arrays an expensive operation, because of the need
for finding a suitable chunk of unused space in the memory pool. Several smaller
contiguous arrays, on the other hand, can be allocated more easily. Therefore we
designed a second version of the EDF interface structure struct ext_diff_fct_v2
that supports providing several input arrays and several output arrays, each not
necessarily of the same size. We also added extra integer-valued input parameters
and an opaque object-valued input/output parameter that do not have an effect
on the differentiation process outside the EDF. These changes required adjusting
the signatures of the forward and reverse mode implementations for the EDF.
The signatures now contain the number of input and output vectors, the sizes of
each of these, their values, the corresponding tangents or adjoints, extra integer-
valued input arrays, and an opaque context object if needed (see Fig. 2(a)).
However, the process of registration and setup of the function pointers stays the
same as in the original EDF interface and can even be encapsulated in a separate
routine (see Fig. 2(b)), which is called once before the function is required to
be evaluated. The ADOL-C evaluation of the complete structure would then
look something like the code in Fig. 2(c). The user provided functions edf->
fov_forward() or edf->fov_reverse() are called during the evaluation of the
jacobian() at the appropriate point.

Runtime support for ADIC generated code: To support the mixed approach’s
use of forward-and-reverse mode AD in a single execution instance, we recoded
ADIC’s runtime library in C++ and used namespaces to separate forward-
and reverse-mode derivative manipulation routines. The namespace usage is in-
serted into the ADIC-generated code by using simple postprocessing scripts. The
DERIV_TYPE structure was rewritten to be a class that supports both dynamic and
static allocation of the grad array within DERIV_TYPE. Because dynamic alloca-
tion for every DERIV_TYPE object can be expensive, we created a memory manager
that allocates a large amount of memory from the heap and then allocates the



// primal function signature
int myfunc_v2 (int iArrLen, int *iArr, int nin, int nout, int *insz, double **x, int *outsz,

double **y, void* ctx);
// first order forward implemetation signature
int myfunc_forward_v2(int iArrLen, int* iArr, int nin, int nout, int *insz, double **x, int

ndir, double ***Xp, int *outsz, double **y, double ***Yp, void* ctx);
// first order reverse implementation signature
int myfunc_reverse_v2(int iArrLen, int* iArr, int nout, int nin, int *outsz, int dir, double

***Up, int *insz, double ***Zp, double **x, double **y, void* ctx);

(a)

ext_diff_fct_v2 * reg_ext_fct_myfunc(){
ext_diff_fct_v2 *edf

= reg_ext_fct(myfunc_v2);
edf->zos_forward = myfunc_v2;
edf->fov_forward = myfunc_forward_v2;
edf->fov_reverse = myfunc_reverse_v2;
// similar for scalar modes
...
return edf;

}

(b)

trace_on(tag);
... // evaluations
if (firsttime) edf = reg_ext_fct_myfunc();
call_ext_fct(edf,...);
... // further evaluations
trace_off();
...
jacobian(tag,...); // when required

(c)

Fig. 2. (a) Signatures of the forward- and reverse-mode wrapper routines; (b) per-
routine registration of EDF; (c) calling an EDF in ADOL-C instrumented code

grad array of an object from this pool. We matched ADIC’s layout of grad array
to ADOL-C’s layout of tangents and adjoints for the input and output vectors.
Therefore only pointers are copied and ADIC reuses memory already allocated
in ADOL-C.

User annotations and preprocessing: User annotations have two purposes: first,
they identify an EDF and its callees for extraction and subsequent differentia-
tion by ADIC. The annotations surround the EDF and its callees as shown in
Fig. 3(a). The extraction of code is necessary, because ADIC requires the C code
to be isolated from the C++ code that it does not differentiate. Additional user
editing may be required to obtain code that is appropriate for differentiation
by ADIC. Second, annotations are used to generate the interface code for ar-
guments of the EDF. The annotation identifies inputs, outputs, their respective
sizes or extra integers required for the computation, as well as the position of
each formal parameter in the argument list of the ADIC processed code. This
helps generate wrapper code to transfer data between ADOL-C data structures
and ADIC generated code. These annotations are written directly as Python
tuples as seen in Fig. 3(b). Each tuple contains the name of the formal argu-
ment, followed by its size and the position in the formal argument list. The size
itself is a list of length 0, 1, or 2, depending on whether the argument represents
a scalar, a vector, or a matrix. Integer arguments are always scalars. The size
may also contain references to values stored in the integers list. Several inter-
face definititions, and thus multiple EDF structures, may also be used in any
application.



/*@ declare doubletype=adouble @*/
// since ADIC doesn’t know adouble

/*@ begin adic_extract global @*/
... // global defines, variables etc.

// required by ADIC routines
/*@ end adic_extract @*/

/*@ begin adic_extract @*/
... // lower level computational routines

// differentiated by ADIC
/*@ end adic_extract @*/

/*@ begin adic_extract replace=rk_iter
type=void @*/

... // top level interface routine
// differentiated by ADIC

/*@ end adic_extract @*/

(a)

void rk_iter(double h, adouble *y, adouble
**k, adouble *rhs, int n, adouble *u,
int m, adouble *yt, adouble *ynew)

{
/*@ begin adic_export interface
name = ’rk iter’
iarr = [ (’n’,5), (’m’,7) ]
input = [ (’h’, [], 1),

(’y’, [’2∗nDe+5’], 2),
(’u’, [’5’],6) ]

output = [ (’k’, [’stage’,’2∗nDe+5’], 3),
(’rhs’, [’2∗nDe+5’], 4),
(’yt’, [’2∗nDe+5’], 8),
(’ynew’,[’2∗nDe+5’], 9)]

@*/
... // original ADOL-C computation code
/*@ end adic_export @*/
}

(b)

Fig. 3. (a) Annotations for extracting code for ADIC processing; (b) annotations de-
scribing the interface routine to generate wrapper code

Table 1. Sizes of trace files created on disk in a purely ADOL-C implementation of
periodic adsorbtion process that are not present in a mixed approach

Nspace

Ntime 2000 3000 5000

20 576 MB 863 MB 2511 MB
30 856 MB 2240 MB 3734 MB
50 2472 MB 3707 MB 7146 MB

3 Applications

We have tested the mixed approach on two different applications. The following
describes each application briefly and provides the results obtained using the
mixed approach.

Periodic adsorption process: The periodic adsorption process was studied from
an optimization point of view in [8, 12]. A system of PDAEs in time and space
with periodic boundary conditions models the cyclic steady state of a process,
where a fluid is preferentially absorbed on the surface of a sorbent bed. This
leads to dense Jacobians which dominate the computation time (see [8]). There-
fore, previous works have used inexact Jacobians (for example, [12]). Using AD,
however, we compute the equality and inequality constraint Jacobians as well
an objective gradient exact up to machine precision.

The PDAE system is discretized in space using a finite-volume approach, and
the resulting system of ODEs is then integrated in time by using a Runge-Kutta
method. This Runge-Kutta iteration in the implementation was determined to
be a suitable EDF for differentiation by ADIC. This is particularly suitable
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Fig. 4. Time required (in seconds) to compute (a) Jacobian of equality constraints
in forward mode; (b) Jacobian of inequality constraints and gradient of objective in
reverse mode

because this routine is repeatedly called in each time step of the simulation
and has a C-like implementation. The annotations for declaring this interface
routine are shown in Fig. 3(b). Two other lower-level routines for computing the
right hand side of the ODE system are also processed by ADIC. The overall
problem size depends on the spatial and temporal discretization (Nspace and
Ntime). In Table 1 we show the memory required by the trace files created on
disk in a purely ADOL-C implementation for various problem sizes, which are
absent in the mixed approach. Both approaches preallocate memory of size 2.3
GB in all cases. The absence of trace files on disk in the mixed approach shows
that the trace was small enough in all cases to fit into the preallocated memory.
Additionally, the runtimes of the mixed approach show improvement over a pure
ADOL-C implementation. In Fig. 4(a) the runtimes required in the computation
of a equality constraint Jacobian with forward mode are plotted on the left figure
for certain problem sizes. In the right side is a breakdown of the time required in
the mixed approach into the time required in the wrapper code of the EDF and
the ADIC-processed part of the EDF. The same runtimes for the computation



of the inequality constraint Jacobian and the objective gradient are shown in
Fig. 4(b).

Fluid dynamics – airfoil simulation: Recently, AD was successfully applied to
the open source multiphysics suite SU2 [10], which uses a highly modular C++
code structure, to design an efficient adjoint solver [1] for optimization. The
implementation is based on the fixed-point formulation of the underlying solver
and requires only the recording of one iteration using the converged flow solution.
Therefore, at least for steady-state problems, the necessity for checkpointing is
eliminated. Still, because of the nature of operator overloading, the memory
requirements increase by approximately a factor of 10 compared with the direct
flow solver.

SU2 is based on a finite-volume method and offers several well-established
combinations of spatial and temporal methods for discretizing the flow equations.
Either the steady Euler or the Navier-Stokes equation can be used as the physical
model. For this work we have used a second-order central discretization plus
an artificial dissipation term (Jameson-Schmidt-Turkel scheme, JST) for the
convective terms and a least-squares method for evaluating the gradients needed
for the viscous terms. The explicit Euler method is used to advance in pseudo-
time until convergence. The following two routines were identified as promising
use cases for the mixed approach:
1. CCentJST_Flow::ComputeResidual(su2double*val_residual):

per edge convective residual, projects convective flux on the cell-face normal.
2. CEulerSolver::SetPrimitive_Gradient_LS(CGeometry *geometry):

per node gradient of non-conservative variables using least-squares (only Navier-Stokes).

Both routines contain mainly C-like code, which can be processed by ADIC.
A potential drawback, however, is that they use mainly class member variables
as input. Another difficulty is posed by calls of routines that return variables
from other class objects. In such cases we manually copy the data back and forth
into simple arrays and define interface routines that take extra inputs.

Fig. 5(a) shows the runtime and memory requirements for the Euler solver
with a 2D airfoil in transonic flow with 10216 elements. While the time for tracing
is clearly reduced, the evaluation time has significantly increased. This indicates
that ADIC generated derivative code is slower for that case compared to ADOL-
C. However there is a decrease of disk usage, solely due to trace-files, and an
increase in the used RAM. For a 3D airfoil with 582752 elements the workload
for each element is much higher. In that case the total runtime for tracing plus
evaluation decreases in the mixed approach as shown in Fig. 5(b). Still, a large
fraction of the evaluation time is in ADIC generated code. Disk usage reduces
by approximately 10% while the used RAM increases insignificantly. For the
Navier-Stokes solver with a 2D airfoil with 13937 elements, as shown in Fig. 5(c),
the time for tracing reduces by 36% and the evaluation time increases slightly,
resulting in a total reduction by 16%. Furthermore, the total memory usage
decreases by 15%.
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Fig. 5. Runtime and memory requirements for a 2D Euler case (a), 3D Euler case (b)
and 2D Navier-Stokes case (c).

4 Conclusions and future work

We have implemented a mixed approach to AD that uses the operator overload-
ing approach to differentiate most of an application and source transformation
to differentiate just the computationally intensive portions. The user identifies
these portions to be processed by ADIC and uses annotations and a preprocessor



to generate code that interfaces ADOL-C’s internal data structures with ADIC
generated code. The mixed approach has been applied successfully to medium-
sized and large-sized applications, resulting in lower memory usage. We plan to
apply the mixed approach to more applications. We will also study the benefit
of differentiating most of an application using source transformation and only
some C++ portions using ADOL-C.
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